

HYPATIA (370-415 D. C.) Una excepcional mujer griega, hija del filósofo y matemático Teón. Se hizo célebre por su saber, por su elocuencia y por su belleza. Nacida en Alejandría, viaja a Atenas donde realiza estudios; al regresar a Alejandría funda una

escuela donde enseña las doctrinas de Platón y Aris-tóteles y se pone al frente del pensamiento neopla-tónico. Hypatia es uno de los últimos matemáticos griegos. Se distinguió por los comentarios a las obras de Apolonio y Diofanto. Murió asesinada bárbaramente.

DESCOMPOSICION FACTORIAL

(131) FACTORES

Se llama factores o divisores de una expresión algebraica a las expresiones algebraicas que multiplicadas entre sí dan como producto la primera expresión.

Así, multiplicando a por a+b tenemos:

$$a(a+b) = a^2 + ab$$

a y a+b, que multiplicadas entre sí dan como producto a^2+ab , son factores o divisores de $a^2 + ab$.

Del propio modo.

$$(x+2)(x+3) = x^2 + 5x + 6$$

luego, x + 2 y x + 3 son factores de $x^2 + 5x + 6$.

- (132) DESCOMPONER EN FACTORES O FACTORAR una expresión algebraica es convertirla en el producto indicado de sus factores.
- 133) FACTORAR UN MONOMIO Los factores de un monomio se pueden hallar por simple inspección. Así, los factores de 15ab son 3, 5, a y v. Por tanto:

 $15a \ b = 3.5 \ a \ b$.

(134) FACTORAR UN POLINOMIO

No todo polinomio se puede descomponer en dos o más factores distintos de 1, pues del mismo modo que, en Aritmética, hay números primos que sólo son divisibles por ellos mismos y por 1, hay expresiones algebraicas que sólo son divisibles por ellas mismas y por 1, y que, por tanto, no son el producto de otras expresiones algebraicas. Así a + b no puede descomponerse en dos factores distintos de 1 porque sólo es divisible por a + b y por 1.

En este capítulo estudiaremos la manera de descomponer polinomios en dos o más factores distintos de 1.

CASO I

CUANDO TODOS LOS TERMINOS DE UN POLINOMIO TIENEN UN FACTOR COMUN

- a) Factor común monomio
- 1. Descomponer en factores $a^2 + 2a$.
- a^2 y 2a contienen el factor común a. Escribimos el factor común a como coeficiente de un paréntesis; dentro del paréntesis escribimos los cocientes de dividir $a^2 \div a = a$ y $2a \div a = 2$, y tendremos
 - 2. Descomponer $10b 30ab^2$.

Los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10. Tomamos 10 porque siempre se saca el mayor factor común. De las letras, el único factor común es b porque está en los dos términos de la expresión dada y la tomamos con su menor exponente b.

El factor común es 10b. Lo escribimos como coeficiente de un paréntesis y dentro ponemos los cocientes de dividir $10b \div 10b = 1$ $y - 30ab^2 \div 10b = -3ab$ y tendremos:

3. Descomponer $10a^2 - 5a + 15a^3$.

El factor común es 5a. Tendremos:

$$10a^2 - 5a + 15a^3 = 5a(2a - 1 + 3a^2)$$
. R.

4. Descomponer $18mxy^2 - 54m^2x^2y^2 + 36my^2$.

El factor común es 18 my². Tendremos:

$$18mxy^2 - 54m^2x^2y^2 + 36my^2 = 18my^2(x - 3mx^2 + 2).$$
 R.

5. Factorar $6xy^3 - 9nx^2y^3 + 12nx^3y^3 - 3n^2x^4y^3$. Factor común $3xy^3$.

$$6xy^3 - 9nx^2y^3 + 12nx^3y^3 - 3n^2x^4y^3 = 3xy^3(2 - 3nx + 4nx^2 - n^2x^3). \quad R.$$

135 PRUEBA GENERAL DE LOS FACTORES

En cualquiera de los diez casos que estudiaremos, la prueba consiste en multiplicar los factores que se obtienen, y su producto tiene que ser igual a la expresión que se factoró.

EJERCICIO 89

Factorar o descomponer en dos factores:

100	The Gacoco	mpone	i chi dos factores:	
0	a^2+ab .	16.	a^3+a^2+a .	
2	$b+b^2$.	17.	$4x^2-8x+2$.	1
3.	x^2+x .	18.	$15y^3 + 20y^2 - 5y$.	
4.	$3a^3-a^2$.	19.	$a^3-a^2x+ax^2.$	
10	x^3-4x^4 .	20	$2a^2x + 2ax^2 - 3ax.$	
6.	$5m^2+15m^3$.	21)	$x^3 + x^5 - x^7$.	
7.	ab-bc.	22.	$14x^2y^2-28x^3+56x^4$.	
8.	x^2y+x^2z .	23.	$34ax^2 + 51a^2y - 68ay^2$.	
9.	$2a^2x + 6ax^2$.	24.	$96-48mn^2+144n^3$.	
ID	$8m^2-12mn$.	25	$a^2b^2c^2-a^2c^2x^2+a^2c^2y^2$.	
11.	$9a^3x^2-18ax^3$.	26.	$55m^2n^3x+110m^2n^3x^2$	
12.	$15c^3d^2+60c^2d^3$.		$-220m^2y^3$.	
13.	$35m^2n^3-70m^3$.	27.	$93a^3x^2y - 62a^2x^3y^2$	
14.	$abc+abc^2$.	ode Late	$-124a^2x$.	
(5)	$24a^2xy^2-36x^2y^4$.	28.	$x-x^2+x^3-x^4$.	

29. $a^{6}-3a^{4}+8a^{3}-4a^{2}$. 25 $x^{7}-10x^{5}+15x^{3}-5x^{2}$. 31. $x^{15}-x^{12}+2x^{9}-3x^{6}$. 32. $9a^{2}-12ab+15a^{3}b^{2}-24ab^{3}$.

33. $16x^3y^2 - 8x^2y - 24x^4y^2 - 40x^2y^3$.

34. $12m^2n+24m^3n^2-36m^4n^3+48m^5n^4$.

35. $100a^2b^3c - 150ab^2c^2 + 50ab^3c^3 - 200abc^2$.

36. $x^5-x^4+x^3-x^2+x$.

37. $a^2-2a^3+3a^4-4a^5+6a^6$.

 $38 3a^2b + 6ab - 5a^3b^2 + 8a^2bx$ $+4ab^2m.$

39. $a^{20}-a^{16}+a^{12}-a^8+a^4-a^2$.

b) Factor común polinomio

1. Descomponer x(a+b) + m(a+b).

Los dos términos de esta expresión tienen de factor común el binomio (a+b).

Escribo (a+b) como coeficiente de un paréntesis y dentro del paréntesis escribo los cocientes de dividir los dos términos de la expresión dada entre el factor común (a+b), o sea:

$$\frac{x(a+b)}{(a+b)} = x \quad y \quad \frac{m(a+b)}{(a+b)} = m \quad y \text{ tendremos:}$$

$$x(a+b) + m(a+b) = (a+b)(x+m). \quad R.$$

2. Descomponer 2x(a-1)-y(a-1).

Factor común (a-1). Dividiendo los dos términos de la expresión dada entre el factor común (a-1), tenemos:

$$\frac{2x(a-1)}{(a-1)} = 2x \quad y \quad \frac{-y(a-1)}{(a-1)} = -y.$$

Tendremos: 2x(a-1) - y(a-1) = (a-1)(2x - y). R.

3. Descomponer m(x+2) + x + 2.

Esta expresión podemos escribirla: m(x+2) + (x+2) = m(x+2) + 1(x+2). Factor común (x+2). Tendremos:

$$m(x+2)+1(x+2)=(x+2)(m+1)$$
. R.

4. Descomponer d(x+1) - x - 1.

Introduciendo los dos últimos términos en un paréntesis precedido del signo – se tiene:

$$a(x+1)-x-1=a(x+1)-(x+1)=a(x+1)-1(x+1)=(x+1)(a-1)$$
. R.

5. Factorar 2x(x + y + z) - x - y - z.

Tendremos:

$$2x(x+y+z) - x - y - z = 2x(x+y+z) - (x+y+z) = (x+y+z)(2x-1).$$
 R.

6. Factorar (x-a)(y+2) + b(y+2).

Factor común (y+2). Dividiendo los dos términos de la expresión dada entre (y+2) tenemos:

$$\frac{(x-a)(y+2)}{(y+2)} = x - a \quad y \quad \frac{b(y+2)}{(y+2)} = b; \text{ luego:}$$
$$(x-a)(y+2) + b(y+2) = (y+2)(x-a+b). \quad R.$$

7. Descomponer (x+2)(x-1)-(x-1)(x-3).

Dividiendo entre el factor común (x-1) tenemos:

$$\frac{(x+2)(x-1)}{(x-1)} = (x+2) \quad \text{y} \quad \frac{-(x-1)(x-3)}{(x-1)} = -(x-3).$$

Por tanto:

$$(x+2)(x-1)-(x-1)(x-3) = (x-1)[(x+2)-(x-3)]$$

= $(x-1)(x+2-x+3) = (x-1)(5) = 5(x-1)$. R.

8. Factorar x(a-1) + y(a-1) - a + 1.

$$x(a-1) + y(a-1) - a + 1 = x(a-1) + y(a-1) - (a-1) = (a-1)(x+y-1)$$
. R.

EJERCICIO 90

Factorar o descomponer en dos factores:

$$a(x+1)+b(x+1).$$

$$x(a+1)-3(a+1)$$
.

5.
$$2x(n-1)-3y(n-1)$$
. 6 $a(n+2)+n+2$.

7.
$$x(a+1)-a-1$$
.

8.
$$a^2+1-b(a^2+1)$$
.
9. $3x(x-2)-2y(x-2)$.

10.
$$1-x+2a(1-x)$$
.
11. $4x(m-n)+n-m$.
12. $-m-n+x(m+n)$.

13.
$$a^3(a-b+1)-b^2(a-b+1)$$
.

$$4m(a^2+x-1)+3n(x-1+a^2).$$

16
$$(x+y)(n+1)-3(n+1)$$
.
17. $(x+1)(x-2)+3y(x-2)$.

18.
$$(a+3)(a+1)-4(a+1)$$
.